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Scientific Progress Report:  

Using the support from AFOSR under the PECASE award, the PI has established a 
world-class optical spectroscopy laboratory and made major advances in several areas 
of nanophotonics, new atomically thin semiconductors, and spintronics. The flexibility of 
this program allows the PI to adjust to the most exciting development in these exciting 
fields in basic science and technology, yet relevant to DoD missions and future 
operations. We have published 20 articles in peer review journals. It would not be 
possible to discuss all these accomplishment in this final report. The PI has chosen a 
few representative works and discussed them in detail.   

A. Published Journal Articles 
1. Daniel R. Birt, Brian O’Gorman,Maxim Tsoi, Xiaoqin Li, Vladislav E. Demidov, 
and Sergej O. Demokritov, “ Diffraction of spin waves from a submicrometer-size 
defect in a microwaveguide”, Appl. Phys. Lett. 95, 122510, 2009. 
 
2. Vladislav E. Demidov, and Sergej O. Demokritov, Daniel R. Birt, Brian 
O’Gorman,Maxim Tsoi, and Xiaoqin Li, “ Radiation of spin waves from the open end 
of a microscopic magnetic-film waveguide”, Phys. Rev. B., 80, 014429, 2009. 
 
3. Meg Creasey, Xiaoqin Li, J. H. Lee, Zh. M. Wang, G. J. Salamo, “Strongly 
Confined Excitons in Self-Assembled InGaAs Quantum Dot Clusters Produced by a 
Hybrid Growth Method”, J. Appl. Phys., 107, 104302, 2010.  
 
4. Xuhuai Zhang, Marcelo Davanco, Kara Maller, Thomas Jarvis, Chihhui Wu, 
Dmitriy Korobkin, Yaroslav Urzhumov, Xiaoqin Li, Gennady Shvets, Stephen R. 
Forrest, “Interferometric characterization of a sub-wavelength near-infrared negative 
index metamaterial”, Opt. Exp.18, 17788, 2010 
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5. Suenne Kim, Farbod Shafiei, Daniel Ratchford, Xiaoqin Li, “Controlled AFM 
manipulation of small nanoparticles and assembly of hybrid nanostructures”, 
Nanotechnology, 22, 115301, 2011.  

 

6. Daniel Ratchford, Farbod Shafiei, Suenne Kim, Stephen, Gray, Xiaoqin Li, 
“Manipulating Coupling between a single semiconductor quantum dot and single 
gold nanoparticle”, Nano Letters, 11, 1049, 2011.  

 

7. Daniel Ratchford, Konrad Dziatkowski, Thomas Hartsfield, Xiaoqin Li, Yan Gao, 
Zhiyong Tang, “Photoluminescence dynamics of ensemble and individual CdSe/ZnS 
quantum dots with an alloyed core/shell interface”, Journal of Applied Physics, 109, 
103509, 2011.  

 

8. Daniel Ratchford, Farbod Shafiei, Stephen Gray, Xiaoqin Li, “Polarization 
properties of a CdSe/ZnS and Au Nanoparticle Dimer”, ChemPhysChem, 13, 2522, 
2012. 

 

9. Daniel R. Birt, Kyongmo An, Shingo Tamaru, David Ricketts, Kin Wong, Kang 
Wang, Maxim Tsoi, Xiaoqin Li “Deviation from Exponential Decay for Spin Waves 
Excited with an Coplanar Waveguide Antenna”, Appl. Phys. Lett. 101, 252409,  2012 

 

10. Daniel R. Birt, Kyongmo An, Annie Weathers, Li Shi, Maxim Tsoi, Xiaoqin Li,  
“Brillouin Light Scattering Spectra as local Temperature Sensors for Thermal 
Magnons and Acoustic Phonons” , Appl. Phys. Lett. 102, 082401, 2013 

 

11. Megan Creasey, Xiaoqin Li, J. H. Lee, Zh. M. Wang, G. J. Salamo, “Self-
Assembled InGaAs/GaAs quantum dot molecules with controlled spatial and 
spectral properties” Nano Letters, 12, 5169, 2012. 

 

12. Farbod Shafiei, Chihhui Wu, Patrick Putzke, Yanwen Wu, Akshay Singh, 
Xiaoqin Li, Gennady Shvets “Plasmonic Nano-Protractor Based on Polarization 
Spectro-Tomography”, Nature-Photonics, 7, 367, 2013 

 

13. Farbod Shafiei, Francesco Monticone, Le Quang Khai, Xing-Xiang Liu, Tom 
Hartsfield, Andrea Alu, Xiaoqin Li, “A subwavelength plasmonic metamolecule 
exhibiting magnetic based optical Fano resonance”, Nature-Nanotechnology, 8, 95, 
2013  
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14. Jinwei Shi, Francesco Monticone, Sarah Elias, Yanwen Wu, Daniel Ratchford 

Xiaoqin Li, Andrea Alu, “Modular assembly of optical nanocircuits”, Nature-
Communications 5, 3896, 2014 

 

15. Akshay Singh, Galan Moody, Sanfeng Wu, Yanwen Wu, Nirmal J. Ghimire, 
Jiaqiang Yan, David G. Mandrus, Xiaodong Xu, and Xiaoqin Li, “Coherent 
Electronic Coupling in Atomically Thin MoSe2”, Phys. Rev. Lett. 112, 216804, 2014 

 

16 Yanwen Wu, Chengdong Zhang, Yang Zhao, Jisun Kim, Matt Zhang, N. 
Mohammadi Estakhri, Xing-Xiang Liu, Greg K. Pribil, Andrea Alù, Chih-Kang Shih, 
Xiaoqin Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of 
Epitaxial Silver”, Advanced Materials 26, 6106–6110, 2014 

   

17. Kyongmo An, Daniel R. Birt, Chi-Feng Pai, Kevin Olsson, Daniel C. Ralph, 
Robert A. Buhrman, and Xiaoqin Li, “Control of propagating spin waves via spin 
transfer torque in a metallic bilayer waveguide” PHYSICAL REVIEW B 89, 
140405(R) (2014) 

 

18. Thomas Hartsfield, Wei-Shun Chang, SeungCheol Yang, Tzuhsuan Ma, Jinwei 
Shi, Liuyang Sun, Gennady Shvets, Stephan Link and Xiaoqin Li, “Single quantum 
dot controls a plasmonic cavity’s scattering and anisotropy”, Proceedings of the 
National Academy of Sciences, 112, 12288, 2015 

 

19. Galan Moody, C. K. Dass, Kai Hao, Chang-Hsiao Chen, Lain-Jong Li, Akshay 
Singh, Kha Tran, Genevieve Clark, Xiaodong Xu, Gunnar Berghäuser, Ermin Malic, 
Andreas Knorr, Xiaoqin Li, “Intrinsic homogeneous linewidth and broadening 
mechanisms of excitons in monolayer transition metal dichalcogenides”, Nature 
Communications 6, 8315, 2015 

 

20. Chun-Yuan Wang, Hung-Ying Chen, Liuyang Sun, Wei-Liang Chen, Yu-Ming 
Chang, Hyeyoung Ahn, Xiaoqin Li, Shangjr Gwo, “Giant colloidal silver crystals for 
low-loss linear and nonlinear plasmonics”, Nature Communications 6, 7734, 2015 

 
B. Objective 

Studies of light-matter interactions in quantum-confined systems and nanostructures 
have provided great insight into diverse and fundamental problems such as many-
body interactions and entanglement. In particular, optical spectroscopy has proved 
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to be a powerful tool for elucidating electronic dynamics owing to its ability to access 
information that is difficult or impossible to obtain otherwise. The knowledge 
obtained from optical spectroscopic studies complement those obtained from other 
techniques and provide a more accurate picture of system dynamics. For example, 
electronic properties of materials are mainly determined by transitions within one 
energy band, which describe carrier transport in real space. On the other hand, 
optical properties are often related to transitions between valence and conduction 
bands. However, a strict separation between intraband and interband phenomena is 
impossible since both are simultaneously present and critical for determining the 
performance limit of future opto-electronic devices needed in DoD operations and 
future commercial products required by the society striving on modern technologies.     
 
In the initial proposal, we outlined two specific projects: (i) investigation of coherent 
electronic coupling in semiconductor quantum dot clusters; (ii) investigation of spin 
wave dynamics in ferromagnetic multilayer structures.  In the course of the project, 
we have expanded the first direction to include investigation of metallic nanoparticles 
and clusters as well as hybrid nanostructures consisted of both metallic and 
semiconductor components. In addition, we have studied an emerging class of 
atomically thin semiconductors known as the transition metal dichalcogenides. In 
this report, we summarize the key progress occurred during the past 6 years. These 
results have been broadly disseminated via conferences and scientific literatures. 
We choose a few representative examples to discuss in this technical report. 
 

C. Scientific Accomplishments 
We will focus on plasmonic and spin wave projects in this progress report on which 
we have made the most significant advance.  

C.1 Plasmonic metamolecules exhibit tunable optical magnetic resonance 
During 2013, we demonstrated a unique metamolecules that exhibit a strong 
magnetic dipole resonance that spectrally overlapped with the electric dipole. Such a 
metamolecule can be used as the basic building block for photonic materials with 
properties that do not exist in nature. Our work was published in Nature 
Nanotechnology. We describe the work in details below.  

The lack of symmetry between electric and magnetic  response in the optical 
frequency range is a fundamental consequence of the small value of the fine-
structure constant and is directly related to the weakness of magnetic effects in 
optical materials1, 2. Properly tailored plasmonic nanoclusters have been proposed to 
induce artificial optical magnetism3-6 based on the principle that magnetic effects are 
indistinguishable from specific forms of spatial dispersion of permittivity at optical 
frequencies7. In a different context, plasmonic Fano resonances have raised great 
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terms of hybridized states16,  for which the interference between bonding and 
antibonding modes gives rise to the Fano resonance.  

In order to confirm this intuitive interpretation of the observed spectrum, we 
performed numerical simulations using the three-dimensional finite element software 
COMSOL Multiphysics. The computed total scattering cross sections are displayed 
in Fig. 2g-h (red lines), showing good agreement with our measurements before and 
after the AFM assembly.  

Our study convincingly demonstrates that a four-particle nanoring can support a 
strong optical magnetic resonance overlapped with a broad electric resonance. This 
specific geometry avoids radiative damping associated with higher-order scattering 
modes and boosts the magnetic response, despite the overall subwavelength size of 
the nanoring. In addition, the near-field interaction between the magnetic and electric 
modes, enabled by the small asymmetries in our geometry, has led to the first 
observation of a magnetic-based optical Fano resonance in the total scattering 
spectrum in a direction along which the direct magnetic response would otherwise 
be zero. Metamaterials with engineered electric and magnetic resonances and their 
controlled coupling may enable many fascinating applications in nanophotonics 
including cloaking, high resolution imaging, sensing and enhanced nonlinear optical 
response. 

 
C.2 plasmonic orientation sensor  
We have successfully demonstrated a new type of sensors that take advantage of 
near-field coupling to activate a dark mode in plasmonic NPs. This accomplishment 
resulted from the close collaboration between Prof. Li and Prof. Shvets’ groups. We 
reported this result in a manuscript just published in Nature Photonics and two 
conferences.  

 
A metallic nanoparticle (MNP) can enormously enhance the absorption or scattering 
cross-section of a barely visible emitting/scattering object (ESO) such as a molecule 
or a quantum dot placed in its close proximity. The near-field coupling between the 
ESO and the MNP underlying this enhancement has been exploited in applications 
ranging from surface enhanced Raman scattering17, 18 and fluorescence19, 20 to 
plasmonic sensors21, 22 and nanolasers23-25. It can also drastically modify the 
extinction spectrum of the resulting hybridized ESO/MNP nano-system and lead to 
Fano interference8, 26-33.   
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second set of spectra ̅ ; , shown in Fig. 5d, correspond to the light incident from 
the opposite side of the assembled structures while preserving the same incidence 
plane. This set of data was taken by rotating the sample by 180 around the 
substrate normal. From here on, subscripts 1 and 2 refer to the two sample 
orientations. Finally, the polarized scattering spectra, ; ≡ , 0,  were 
measured as a function of the analyzer angle, , using p-polarized incident light as 
shown in Fig. 5c.   

The magnitude of the Fano feature is quantified by the derivative of the scattering 
spectra evaluated at the Fano resonance wavelength	 . The spectral derivatives, 

, ̅ , ; / | and ; / | are plotted in Fig. 5e-5f. 

The spectral derivatives reach their maximal values when the angles of the polarizer 
and analyzer are aligned with the projections of the Fano axis in the respective 
reference planes. By fitting harmonic functions to Fig. 5e-5g, we extracted the angles 
corresponding to the maximal spectral derivatives as 120 5 , 68 5 , 
and 75 4 . Any two of these three angles can be used to define the Fano 
axis.  

As the insets in Fig. 5b-5d demonstrates, the Fano axis direction can be 
geometrically defined by the intersection of two planes. We used two different 
approaches to explicitly reconstruct the Fano axis. In the first approach, we combined 

 and , where one plane is defined by the polarization direction of 120  
and the incident beam direction, and another defined by the analyzer direction of 

68  and the substrate normal. The same procedure was used to reconstruct the 
Fano axis direction using  and  in the second approach. We now specify the 
Fano axis in the lab frame, as defined in Fig. 5h, to facilitate direct comparisons 
between the two approaches. In this lab frame, the Fano axis direction extracted from 
the first (second) approach corresponds to Θ 	111 ,Φ 	68 	 Θ 115  and 
Φ	 	 74 	  as indicated by the cyan (magenta) lines in Fig. 5h. Here Θ,Φ  are the 
standard spherical coordinates. Note that the Fano axis extracted from these two 
independent approaches agrees within the experimental errors, thereby providing the 
key experimental confirmation of the PST technique introduced in this work. Below 
we demonstrate how the Fano axis direction can be used to determine physically 
relevant quantities such as the nanorod/nanosphere contact point and the relative 
nanorod orientation.  In another recent experiment, we have extended this plasmonic 
protractor concept to a system consisted of a plasmonic nanosphere and a single 
semiconductor dot. In that case, the Fano resonance is mediated by single photon 
absorption events. The Fano resonance is present even when the QD has already 
photobleached because of its still intact ability to absorb photons.  
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which agrees with full-wave simulations (Fig. 7c). Figure 9d,e shows the corresponding 
simulated displacement vector distributions at the two resonant wavelengths: λ=532 nm 
for incident electric field parallel to the x axis (Fig. 7d) and λ=524 nm for electric field 
along the y axis (Fig. 7e). Similar to a conventional electronic circuit, the intrinsic 
nanoinductance of the gold NPs is not affected by other components in the circuit.  

 
On the basis of the different electric displacement field distributions (Fig. 7d,e), two 

circuits with different connections among the elements (Fig. 7f,g) account for the 
change in the scattering spectra. The three nanocircuit elements are connected in 
series (X-circuit in Fig. 7f) for incident electric field polarized along the axis of the NP 
cluster, since this excitation ensures the continuity of the displacement current across 
the cluster, as confirmed by our simulations in Fig. 7d. In conventional circuit theory, the 
number of independent reactive elements determines the order of a filter. Accordingly, 
the X-circuit (Fig. 7f) realizes a second order filter, which is an LC circuit formed by the 
series combination of an inductor (the Au NPs) and a capacitor (determined by 
the Al2O3 NP and the fringing fields). Conversely, for incident electric field perpendicular 
to the axis of the NP cluster (Fig. 7e), each element experiences the same potential 
difference (that is, voltage), leading to a parallel connection between them. This Y-
circuit (Fig. 7g) forms a third order nanofilter, in which the fringe capacitance is 
connected in series to the parallel of the Au NP inductors and the Al2O3 NP capacitor. 
The scattering spectra predicted by our circuit model (Fig. 7h) are indeed quantitatively 
consistent with the measured and simulated spectra for both X- and Y-circuits (Fig. 
7b,c). By realizing different circuit configurations controlled by the direction of the 
excitation field, we are able to experimentally prove the design and operation of optical 
stereo-circuits, which do not have a counterpart in the electronic realm.  
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circuit45-47, our work shows that it is actually possible to synthesize photonic circuit 
functionality by assembling modular lumped elements. 

 
 We would like to emphasize the key message of this work: the nanocircuit 
paradigm provides an unmatched degree of simplicity to control and tailor the optical 
response of rather complex nanophotonic structures. Remarkably, the impedance of 
each nanosphere remains independent of the cluster geometry and surrounding 
environment in all the circuits we have demonstrated, starting from the isolated NP to 
the complex fourth order nanocircuit. In other words, each NP carries inherent optical 
impedance, which is a property of the particle itself, allowing us to modularize its 
response and combine it in complex configurations. 
 

C.4 Progress on plasmonic nanoparticle-quantum dot hybrid structure 

We experimentally demonstrate for the first time that a single semiconductor 
quantum dot placed in nanometer-scale proximity of a plasmonic cavity can be used to 
control the scattering spectrum and anisotropy of the latter. This work was published in 
Proceedings of the National Academy of Sciences in 2015. 
 

Many quantum network and information processing schemes require the enhanced 
light-matter interaction between a single quantum emitter and a cavity, enabling the 
effective conversion between photonic and matter-based quantum states48-51. Those 
cavity-quantum electrodynamics (QED) effects require a high Purcell factor ∝ / , 
where is the quality factor, and is the volume of the cavity mode 52. The high Q of 
conventional photonic cavities is required to compensate for relatively large (diffraction-
limited) mode volumes and comes at a cost: the narrow linewidth of cavity modes 
places stringent requirements on their spectral alignment with the frequencies of 
quantum transitions.  Plasmonic cavities, on the other hand, achieve high values of 

while maintaining moderate 	values because of their ultra-small modal volume. The 
relaxed spectral alignment requirements facilitate the experimental realization of various 
quantum phenomena, such as collective photon emission from a small ensemble of 
emitters 53 and single photon sources with tunable statistical properties 54.   

Prior experiments exploring cavity QED effects associated with single emitters 
coupled to plasmonic cavities or waveguides focused almost exclusively on the 
observations of reducing the emitter’s lifetimes19, 55, 56. The realms of quantum 
information science and plasmonics have also been bridged by demonstrating that 
photon emission statistics, such as anti-bunching behavior in the second order 
correlation function for single photon sources, remain intact following the photon-
plasmon-photon conversion process 57-59. The possibility of controlling the scattering of 
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a plasmonic nanocavity by a single (and inherently quantum and nonlinear) two-level 
system has also been proposed54, 60, 61 but never experimentally observed.  

The strongly coupled MNP-QD hybrid structure is assembled into a well-controlled 
geometry using the technique of AFM nanomanipulation. The strong coupling between 
the MNP and QD is experimentally confirmed by measuring the exciton lifetime. 
Analyzing the polarization and spectral properties of light scattered by the MNP-QD 
hybrid, we observe that the overall plasmonic cavity scattering is significantly modified 
over a broad spectral range. A Fano resonance spectrally aligned with the QD’s 
quantized exciton resonance is clearly identified when the polarization of the scattered 
photon is along the Fano axis62 connecting the MNP’s center with the QD. The 
anisotropic scattering spectrum observed in our experiments suggests that a 
polarization-controlled, versatile quantum light source may be realized in this simple 
QD-MNP cavity system. 

The calculated polarization-resolved scattering spectra by the QD-MNP (diameters: 
2 6nm and 2 30nm) hybrid are shown in Fig.9(a) for three polarization 

angles  of the analyzer placed in the collection path of the scattering signal to mimic 
the experimental setup. In the absence of the QD, all scattering spectra from a single 
MNP are independent of 	  and possess a single broad peak at 520 nm 
corresponding to the plasmonic dipole resonance of the MNP. The introduction of a QD 
under the MNP, with the separation gap of 1 , modifies the scattering spectrum: a 
sharp Fano feature emerges at the exciton transition wavelength 550nm. The 

magnitude of the feature is a strong function of the analyzer orientation. If the projection 
of the Fano axis onto the analyzer plane is perpendicular to the analyzer direction 
( /2  in Fig.9(a)), then no Fano feature is predicted by our calculation. The 
strongest Fano feature is observed for	 0, and a weaker but finite Fano feature is 
observed for intermediate angles. Therefore, what is originally an isotropic scatterer (a 
spherical MNP) is transformed into a highly anisotropic one by the strong hybridization 
between the QD and the MNP. 
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To illustrate this point, the near-field distributions were calculated for 500	nm 
(Fig. 9b) and 552	nm (Fig. 9c), respectively. These two wavelengths were chosen 
because the scattering intensities are the same. The much higher (by almost a factor 
of	2) electric field induced on the MNP’s surface at	 , is offset by strong near-field 
depolarization (light-color area near the QD) of the MNP by the exciton’s dipole. 
Because the electric field of a dipole rapidly decays with distance, such extreme de-
polarization (which can be alternatively interpreted as the excitation of high-order 
multipoles of the MNP by an exciton) can only occur if the QD is placed within 
nanometers from the MNP. Therefore, it is extremely crucial to precisely position the QD 
near the MNP as accomplished in our experiments. 

We assemble the hybrid structure using the technique of AFM nanomanipulation 39, 

63, 64. The assembly process begins by dispersing MNPs and QDs on a glass substrate 
randomly. We then simultaneously obtain an AFM topography image and a 
photoluminescence (PL) image by scanning the sample on a home-built integrated 
AFM-confocal microscope. We locate isolated MNPs and QDs in close proximity via the 
AFM topography image. We then manipulate a near-by MNP to approach the chosen 
QD. We then measure the lifetime to confirm that the MNP is indeed in the close 
proximity of the QD. Lifetime is, in fact, a rather accurate way to characterize the 
distance between the MNP and QD as demonstrated in our previous work 65.  
 

Measured ensemble absorption and PL emission spectra (taken in solution) of QDs 
are shown in Fig. 10b. The absorption spectrum features multiple discrete exciton 
resonances at lower energies and a continuous absorption spectrum at energies above 
the band gap of the crystal. While all absorption resonances may influence the 
scattering spectrum of the hybrid structure, we focus on the lowest-energy exciton state 
centered near 615  nm with an ensemble-averaged spectral full-width at half-

maximum (FWHM) Δ / ~15 nm.  

 
The dark-field scattering experiments are performed using a home-built optical 

system optimized for small MNP measurements (Fig. 10a). An un-polarized white light 
source incident in a conical geometry generates evanescent fields and excites the 
hybrid structure from all directions. An analyzer is placed in the scattered light’s path to 
select the polarization of the collected scattering. A series of such spectra are displayed 
in Fig. 10c as a function of the analyzer angle. A very sharp Fano feature can be clearly 
observed for 30°. Weaker Fano features are observed for other polarizer 
orientations, all in qualitative agreement with our theoretical predictions in Fig. 9a.  
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Fano features or analyzer angle dependence in the spectral proximity of the exciton 
resonance . Therefore, it is indeed the coupling between a single QD and the MNP 

that turns an otherwise isotropic plasmonic cavity into a strongly anisotropic one. 
Because a single quantum absorber achieves this effect, one can envision the proposed 
hybrid system as an experimental platform for observing a plasmonic cavity anisotropy 
controlled by optical nonlinearity at the single-photon level. The small angular variations 
of	 ,  at shorter wavelengths (around 550nm or below) in Fig. 10c and Fig. 10d 
most likely arise from a small intrinsic deviation of the MNP’s shape from an ideal 
sphere. Unlike the extrinsic anisotropy induced by the QD, it cannot be optically 
controlled and is not of interest for nonlinear quantum optics. 
 

In summary, we have demonstrated that a single semiconductor QD coupled to a 
MNP cavity can effectively control the scattering spectrum of the latter, as well as render 
it highly anisotropic. The speculative implications of such extrinsic anisotropy are very 
intriguing. On the one hand, it serves as an orientation sensor to determine the relative 
locations of the QD and MNP. On the other hand, it should be possible to observe 
polarization-dependent photon statistics of light scattered from the QD-MNP nano-
hybrid.  
 

 C.5 Re-Examine Fundamental Optical Properties of Silver 

In this work, we explore the intrinsic fundamental optical properties of Ag. Using 
atomically smooth epitaxial Ag films, we extracted new optical permittivity highlighting 
significant loss reduction in the visible frequency range. This work was published in 
Advanced Materials in 2014. 

Loss represents the most serious challenge that impedes progress and broad impact 
towards practical technology in the field of plasmonics66-68. Silver (Ag) is by far the 
preferred plasmonic material at optical frequencies due to its lowest loss among all 
metals. However, large discrepancies exist among widely quoted values of optical 
permittivity in Ag due to variations in sample preparation. Here we push to the limit of 
intrinsic fundamental optical properties of Ag. We extracted new optical permittivity 
highlighting significant loss reduction in the visible frequency range from atomic smooth 
silver film. We measured a largely enhanced propagation distance of surface plasmon 
polaritons (SPPs), which confirmed that the intrinsic loss in Ag is lower than previously 
considered possible. The new optical constants are free of extrinsic spectral features 
typically associated with grain boundaries and localized plasmons inevitably present in 
thermally deposited films. 

In this work, we performed careful spectroscopic ellipsometry (SE) measurements and 
analyses on atomically smooth, epitaxially grown, single crystalline Ag films69-71, and 
accurately extracted Kramers-Kronig (K-K) consistent optical constants. Our 
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measurements suggest that the intrinsic loss in Ag is significantly lower, by up to a 
factor of 2 in the visible wavelength range, than the best values previously reported by 
JC72. We also measured SPP propagation distances along these epitaxial Ag films, 
finding greatly enhanced propagation lengths, approaching the fundamental limit 
determined by the new optical constants at both visible and near-infrared (NIR) 
frequencies. The measured propagation distance confirms that the loss determined 
from the permittivity data reported by JC is not an intrinsic limit.  

 
Atomically smooth Ag films were grown using molecular beam epitaxy (MBE) on 

heavily doped Si(111)-7×7 substrates. The high surface quality of a 45 nm oxide capped 
expitaxial film was confirmed by atomic force microscopy (AFM) shown in Fig. 11a. For 
comparison, a 50nm thermally deposited film was also scanned, as shown in Fig. 11b. 
The evaporated film has a root mean square (RMS) roughness of 3.27	  while the 
epitaxially grown film has a roughness of only 0.36	 , nearly an order of magnitude 
smalle. Low-energy electron diffraction (LEED) and reflection high-energy electron 
diffraction (RHEED) patterns shown in Fig. 11c and 11d, respectively, taken in-situ, 
further confirm the long-range single crystalline nature of these films. 
 

We performed SE measurements and analyses73-75, to multiple epitaxial and thermal 
silver films. We present here results from three representative films: an uncapped 40	  
epitaxially grown film, a 45	  epitaxial film capped with 1.5	  of MgO and 2	  of 
Al2O3, and an uncapped 50	  thermal film deposited at a rate of 0.35	 /  serving as 
control. The MgO/Al2O3 cap is a crucial element to prevent the rapid degradation of 
epitaxial silver due to surface oxidation in ambient conditions, and we confirmed via SE 
measurements that the Ag film’s pristine quality persists even after capping. In our 
fitting, we used simple Ag/Si or capping/Ag/Si structural models for the epitaxial films as 
shown in Fig. 11e. The fitted result for  from each film is plotted against those for a 
40	  thermally deposited film measured by JC and the data compiled by Palik from 
multiple samples. In this work, we concentrate on the energy range below the interband 
transition threshold, which is relevant to most plasmonic applications.   

 

In the energy region below 3.8 eV, the contribution to  mainly comes from intraband 
transitions typically accompanied  by scattering between electrons, lattice vibrations 
(phonons), surface roughness and grain boundaries inside the bulk. Since epitaxially 
grown films are single crystalline, scattering from imperfections is expected to be lower 
than that in thermal films. Our measurements indeed show significantly lower loss than 
JC’s values in the 1.8-2.5eV range, while the control film shows values in between JC 
and Palik data. The residues in this region are small and centered around zero for all 
films, suggesting that our model fits the data very well. In the lowest energy range below 
1.5 eV, the error becomes large due to reduced detector efficiency and our extracted  

DISTRIBUTION A: Distribution approved for public release.



appears
large er
measure

 
The re

the ener
sizable p
films (Fi

Fig. 11
50nm 
pattern
and wi
(f) an u
and 2 
0.35	nm

s to be large
rrors in this
ements are

esidues sho
rgy range n
peak in the
g. 11f and g

1. AFM scan
thermally de
ns of an epit
ithout oxide 
uncapped 40
nm of Al2O3
m/s. 

er than that
s same en
 consistent

own in Fig. 
near 3.7eV,
e residue fo
g). We sug

ns of (a) a 45
eposited (0.0
taxially grow
capping.  En
0 nm epitaxi
3, and (h) an

t reported b
nergy regio
t with JC’s i

11f-1h are
 indicated b

or the therm
gest that th

5nm epitaxia
03	nm/s dep

wn Ag film. (e
nergy depen
al film, (g)  a

n uncapped 

by JC. We 
n (gray sh
n this lowe

e not compl
by the oran

mal film (Fig
his peak is a

al (2 nm Al2O
osition rate)

e) Layered s
ndence of ε
a 45 nm epit
50 nm therm

note that th
hadow in th
st energy r

etely rando
nge circle in
g. 11h) that 
associated 

O3/1.5 nm M
) Ag film. (c) 
tructures of 
 extracted fr
taxial film ca
mal film depo

he original J
he Fig. 11f
region.  

om: on clos
n all panels

is absent i
with the pr

MgO capped
LEED and (
our Ag film 
rom SE mea
apped with 1
osited at a ra

JC data co
f-1h). Thus

se inspectio
, one can s
in both epit
resence of g

d) and (b) a 
(d) RHEED 
samples wit

asurements 
.5 nm of Mg
ate of 

ntain 
s our 

on, in 
see a 
taxial 
grain 

th 
on 

gO 

DISTRIBUTION A: Distribution approved for public release.



boundar
Previous
that they
size76. T
range.   

 

Our m
performa
improve
film. We
Light inc
subsequ
the laun

Fig. 1
meas
the la
meas
curves
simula
optica
Simul
the ox

ries. The sa
s theoretica
y lead to h
These earl

measured 
ance of p
ments, we 

e excited an
cident from
uently detec
nching site, 

12. Schema
urements.  

aunching and
urements fo
s are fitted 
ated propag
al constants
ation of the 
xide capping

ame feature
al studies 
igher loss 
ier calculat

optical c
lasmonic d
measured

nd detected
 an oblique
cted at a se
as shown 

atic, experim
(a) Schema
d output slo
or two excit

to the data
ation distan

s. The gree
mode profile

g layers. 

e around th
modeling t
in a certain
tions have

onstants s
devices. In
 SPP prop

d the SPPs 
e angle on 
eries of out
in the scan

mental resul
tic of the pr

ots on the 4
ation wavel
a.  The ins
ces at two d

en dotted li
e and the SP

he same en
the effect o
n waveleng
, in fact, p

suggest im
n order to 
pagation dis

in reflection
a single gr
tput couplin
nning elect

lts, and sim
ropagation d
45 nm thick 
engths (632

set, plotted 
different film
ine marks 
PP excitatio

nergy level 
of grain bo
gth range d
predicted h

mproved t
experime

stances ove
n geometry
roove launc
ng slits with
tron micros

mulations of 
distance setu

epitaxial Ag
2 nm and 8
on semilog

m thicknesse
the wavele

on at the inte

is present 
oundaries h
etermined 

higher loss 

theoretical 
ntally dem
er the 45 n
y, as illustra
ches the S
h increasing
scope (SEM

propagatio
up.  (b) SEM
g film. (c) P
880 nm).  E
 scale, com

es using the
ength at 63
erface betwe

in the JC d
have sugge
by the ave
in this en

limits to 
monstrate t
nm epitaxia
ated in Fig. 

SPPs, which
g distance 

M) image in

n distance 
M image of 
Propagation 
Exponential 
mpares the 
 measured 

32 nm. (d) 
een Ag and 

data. 
ested 
erage 
nergy 

the 
hese 
al Ag 
12a. 

h are 
from 

n Fig. 

DISTRIBUTION A: Distribution approved for public release.



12b. We used two different incident wavelengths (632 nm and 880 nm).  The integrated 
optical signals from the output grooves are plotted as a function of propagation length in 
Fig. 12c. The experimental data were fitted with simple exponential functions, and we 
extracted intensity propagation distances of 22 5	  and 42 3	  for SPP at 632 
nm and 880 nm, respectively. Analytical calculations predict propagation distances of 
21	  at 632 nm and 78	  at 880 nm for an ideal layer with the newly extracted 
permittivity, as shown in the inset of Fig. 12c. The propagation distance measurement at 
632 nm is in excellent agreement with the calculated value. It is well known that the 
SPP propagation distance strongly depends on the film thickness. With a film thickness 
of 200 nm, for instance, the predicted intensity propagation distance would increase to 
123 µm at 632 nm and 378 µm at 880 nm, respectively. The SPP launching mechanism 
and expected modal profile is further verified by conducting full-wave simulations of the 
geometry (Fig. 12d), employing the experimentally retrieved optical parameters.  

 
We suggest that future theoretical calculations on metamaterials and plasmonic 

devices based on Ag should incorporate the new optical constants reported here, as 
they better capture the intrinsic properties of bulk Ag. Because we were able to fit the 
experimental data with a simple, three-component analytical model, these newly 
extracted optical constants will facilitate the calculation of other important parameters 
such as the material Q-factor and group velocity in Ag. While the reported optical 
constants would not apply to low-quality films produced using thermal evaporations, Ag 
nanoparticles77, nanoshell78, and nanoplatelets79 synthesized using wet chemical 
procedures are considered to be of single crystalline structure, for which these new 
optical constant values are expected to apply. We anticipate that these high-quality 
epitaxial silver films and their improved optical properties will have a significant positive 
impact on the fields of plasmonics and metamaterials as already demonstrated in the 
case of nanolasers80.  

 
C.6. Progress on the spin wave project 

We have mainly three accomplishments in the spin wave project. First, we 
demonstrated that the spin wave amplitude can be controlled by a direct current in a 
bilayer structure composed of a heavy metal and a magnetic material via the spin hall 
effect. Second, we demonstrated the use of the micro-Brillouin light scattering (µ-BLS) 
technique as a local temperature sensor for magnons in a permalloy (Py) thin film and 
phonons in the glass substrate. Third, we demonstrate that the spatial decay of spin 
waves launched by a microwave antenna deviates from an exponential function typically 
assumed because of interference effects. We focus on the first two accomplishments in 
this report.  

C.6.1. Spin wave amplification 
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Spin waves are fundamental excitations in magnetic materials. Understanding the 
excitation, propagation, and damping of spin waves is critical for a wide range of 
practical applications including magnetic memories, microwave oscillators, and logic 
devices beyond the conventional CMOS technology.  For example, as the data rate in 
magnetic memory devices reaches gigahertz range, the processional dynamics 
associated with spin waves has become relevant in limiting operational speed in these 
devices. SWs may also serve as a link between phase locked nano-oscillators 81, 82 or 
carry spin current in magnetic microstructures subject to a thermal gradient 83, 84. SWs 
have also been proposed for use in an information bus in a hybrid logic device 85 and for 
building logic gates 86.  

A major obstacle to many of these applications is the fast damping or short 
propagation length of SWs in metallic magnetic layers. Current induced magnetization 
manipulation via spin transfer torque (STT) has been proposed to compensate for the 
damping of SWs 87, 88. The search for efficient STT materials has led to the investigation 
of metallic bilayer structures consisting of a magnetic layer and a nonmagnetic layer 
with strong spin-orbit coupling (e.g., Pt 89-92, Ta 93, and W 94 ). In the nonmagnetic layer, 
spin polarized current is generated via the spin Hall effect (SHE), in which electrons with 
different spin states are deflected to opposite directions 95, 96. Such spin polarized 
current then exerts a STT on the adjacent magnetic layer, enabling control of 
magnetization dynamics via electric control.  

We investigated the electric control of propagating spin waves (SWs) in a CoBFe/Ta 
bilayer waveguide as illustrated in Fig. 13. We use µ-BLS to observe the amplitude of 
the SWs in the bilayer waveguide and its change due to an applied magnetic field and 
DCs. After removing the effect of heating in the analysis, we observed an 8% change of 
SW amplitude at a reasonable DC density in a device that has not been fully optimized. 
Further improvement in device design and fabrication may eventually lead to complete 
SW damping compensation 97, thus opening many exciting opportunities in spintronics 
and magnonics. This accomplishment resulted from collaborations with Prof. Ralph and 
Prof. Burhman’ groups. We reported this result in Physical Review B Rapid 
communication in 2014. 
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spin waves were excited in the Damon-Eshbach108 configuration, wherein a static 
magnetic field was applied parallel to the antenna and perpendicular to the propagation 
direction of the spin waves. While mapping the spatial dependence of the surface spin 
wave intensity, we observed a significant deviation from the simple exponential decay 
due to damping: an oscillatory signal is superimposed on top of the exponential decay. 
To model the observed complicated spatial dependent spin wave intensity, we use a 
closed-form expression that includes contributions from the propagating spin wave and 
a background magnetization with spatially uniform phase. This simplified closed-form 
model allows us to fit the experimental data and to extract several key parameters 
including the wave vectors, the group velocities, and the propagation lengths of the 
excited spin waves.  This result is published in Applied Physics Letters.  
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